742 research outputs found

    A Constraint Programming Approach for Non-Preemptive Evacuation Scheduling

    Full text link
    Large-scale controlled evacuations require emergency services to select evacuation routes, decide departure times, and mobilize resources to issue orders, all under strict time constraints. Existing algorithms almost always allow for preemptive evacuation schedules, which are less desirable in practice. This paper proposes, for the first time, a constraint-based scheduling model that optimizes the evacuation flow rate (number of vehicles sent at regular time intervals) and evacuation phasing of widely populated areas, while ensuring a nonpreemptive evacuation for each residential zone. Two optimization objectives are considered: (1) to maximize the number of evacuees reaching safety and (2) to minimize the overall duration of the evacuation. Preliminary results on a set of real-world instances show that the approach can produce, within a few seconds, a non-preemptive evacuation schedule which is either optimal or at most 6% away of the optimal preemptive solution.Comment: Submitted to the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015). 15 pages + 1 reference pag

    31P-NMR spectroscopy of phosphate compartmentation during ischaemia in hearts protected by cardioplegic treatment.

    Get PDF
    Four tissue compartments, differing in proton and inorganic phosphate concentration, were resolved by 31P-NMR spectroscopy in samples from dog hearts after cardioplegic treatment with HTK solution. Inversion of the physiological cytoplasmic-mitochondrial pH gradient was observed. The considerable ensuing acidosis of the matrix is discussed with regard to a possible delocalisation of ferrous ions

    Enterohemorrhagic <i>E. coli</i>: virulence factors and infection in cattle

    Get PDF
    Las cepas de E. coli enterohemorrágica (EHEC) constituyen un subgrupo de las E. coli verotoxigénicas (VTEC) o E. coli productoras de toxinas Shiga (Stx) (STEC). Dentro de este grupo, E. coli O157:H7 es el serotipo productor de Stx más conocido. Las cepas de EHEC producen colitis hemorrágica y el síndrome urémico hemolítico en humanos. Al igual que las cepas enteropatogénicas de E. coli (EPEC), estas cepas median su patogénesis a través de lesiones de "adherencia y destrucción" (lesión A/E). El ganado bovino es el principal reservorio de E. coli O157:H7 y se lo asocia directamente a la mayoría de los brotes en humanos. En esta revisión se analizan los factores de virulencia involucrados en la patogénesis de las cepas EHEC, especialmente aquellos que participan en la colonización de la mucosa intestinal de los bovinos.Enterohemorrhagic E. coli (EHEC) strains constitute a subset of the verotoxigenic E. coli (VTEC) or Shiga toxin (Stx)-producing E. coli (STEC). Within this group, E. coli O157:H7 is the most well-known Stx-producing serotype. EHEC strains produce hemorrhagic colitis and hemolytic uremic syndrome in humans. Like enteropathogenic E. coli (EPEC) strains, they mediate their pathogenesis through "attaching and effacing" (A/E) lesions. Cattle are the main reservoir of E. coli O157:H7 and they are directly linked to most of the human outbreaks. In this review, the virulence factors involved in the pathogenesis of EHEC strains, especially those participating in the colonization of the bovine intestinal mucosa, are analyzed.Facultad de Ciencias Veterinaria

    Dynamics of membranes driven by actin polymerization

    Get PDF
    A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wave-like, corresponding to membrane ruffling and actin-waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.Comment: 37 pages, 8 figures, revte

    Safe Brain Tumor Resection Does not Depend on Surgery Alone - Role of Hemodynamics

    Get PDF
    Aim of this study was to determine if perioperative hemodynamics have an impact on perioperative infarct volume and patients' prognosis. 201 cases with surgery for a newly diagnosed or recurrent glioblastoma were retrospectively analyzed. Clinical data and perioperative hemodynamic parameters, blood tests and time of surgery were recorded. Postoperative infarct volume was quantitatively assessed by semiautomatic segmentation. Mean diastolic blood pressure (dBP) during surgery (rho -0.239, 95% CI -0.11 - -0.367, p = 0.017), liquid balance (rho 0.236, 95% CI 0.1-0.373, p = 0.017) and mean arterial pressure (MAP) during surgery (rho -0.206, 95% CI -0.07 - -0.34, p = 0.041) showed significant correlation to infarct volume. A rank regression model including also age and recurrent surgery as possible confounders revealed mean intraoperative dBP, liquid balance and length of surgery as independent factors for infarct volume. Univariate survival analysis showed mean intraoperative dBP and MAP as significant prognostic factors, length of surgery also remained as significant prognostic factor in a multivariate model. Perioperative close anesthesiologic monitoring of blood pressure and liquid balance is of high significance during brain tumor surgery and should be performed to prevent or minimize perioperative infarctions and to prolong survival

    The Second Transmembrane Domain of P2X7 Contributes to Dilated Pore Formation

    Get PDF
    Activation of the purinergic receptor P2X7 leads to the cellular permeability of low molecular weight cations. To determine which domains of P2X7 are necessary for this permeability, we exchanged either the C-terminus or portions of the second transmembrane domain (TM2) with those in P2X1 or P2X4. Replacement of the C-terminus of P2X7 with either P2X1 or P2X4 prevented surface expression of the chimeric receptor. Similarly, chimeric P2X7 containing TM2 from P2X1 or P2X4 had reduced surface expression and no permeability to cationic dyes. Exchanging the N-terminal 10 residues or C-terminal 14 residues of the P2X7 TM2 with the corresponding region of P2X1 TM2 partially restored surface expression and limited pore permeability. To further probe TM2 structure, we replaced single residues in P2X7 TM2 with those in P2X1 or P2X4. We identified multiple substitutions that drastically changed pore permeability without altering surface expression. Three substitutions (Q332P, Y336T, and Y343L) individually reduced pore formation as indicated by decreased dye uptake and also reduced membrane blebbing in response to ATP exposure. Three others substitutions, V335T, S342G, and S342A each enhanced dye uptake, membrane blebbing and cell death. Our results demonstrate a critical role for the TM2 domain of P2X7 in receptor function, and provide a structural basis for differences between purinergic receptors. © 2013 Sun et al

    Bistability in the actin cortex

    Get PDF
    Multi-color fluorescence imaging experiments of wave forming Dictyostelium cells have revealed that actin waves separate two domains of the cell cortex that differ in their actin structure and phosphoinositide composition. We propose a bistable model of actin dynamics to account for these experimental observation. The model is based on the simplifying assumption that the actin cytoskeleton is composed of two distinct network types, a dendritic and a bundled network. The two structurally different states that were observed in experiments correspond to the stable fixed points in the bistable regime of this model. Each fixed point is dominated by one of the two network types. The experimentally observed actin waves can be considered as trigger waves that propagate transitions between the two stable fixed points

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations
    • …
    corecore